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ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and
schizophrenia (SCZ) are highly heritable and linked to disruptions in fetal neurodevelopment. Epigenetic
processes, such as DNA methylation (DNAm), are considered a key pathway of interest. However, it is unclear
whether 1) genetic susceptibility to neurodevelopmental conditions (NDCs) is associated with DNAm patterns
already at birth, 2) DNAm patterns are unique or shared across conditions, and 3) neonatal DNAm patterns can
be leveraged to enhance genetic prediction of neurodevelopmental outcomes.

METHODS: We conducted epigenome-wide meta-analyses of genetic susceptibility to ASD, ADHD, and SCZ
(measured with polygenic scores [PGSs]) and cord blood DNAm in 4 European population-based cohorts
(Npoolea = 5802; 50.2% female). We estimated DNAm pattern overlap between PGSs using heterogeneity
statistics. Furthermore, we built methylation profile scores for each PGS to test incremental variance explained
over genetic data alone in 130 developmental outcomes from birth to 14 years.

RESULTS: In probe-level analyses, the SCZ PGS was associated with neonatal DNAm at 246 loci (p < 9 X 1078,
predominantly in the major histocompatibility complex, supporting an early-origins perspective on SCZ. Functional
characterization confirmed strong genetic effects, blood-brain concordance, and enrichment for immune-related
pathways. Eight loci were identified for the ASD PGS (mapping to FDFT1 and MFHAS1) and none for the ADHD
PGS. Differentially methylated regions were detected across PGSs (130-166 regions). Overall, DNAm signals
were largely distinct between conditions. Incorporating neonatal DNAm data in genetic prediction models
nominally increased the explained variance for several cognitive and motor outcomes.

CONCLUSIONS: Genetic susceptibility to NDCs, particularly SCZ, is detectable in cord blood DNAm in the general
population.

https://doi.org/10.1016/j.biopsych.2025.09.005

Neurodevelopmental conditions (NDCs) are complex, heritability ~20%-40%) (7). However, the mechanisms un-

multifactorial conditions involving perturbations in brain devel-
opment that begin during fetal life (1). The corresponding
DSM-5 diagnostic category includes conditions with a devel-
opmental onset, such as autism spectrum disorder (ASD) and
attention-deficit/hyperactivity disorder (ADHD) (2). Schizo-
phrenia (SCZ) is also regarded as having neurodevelopmental
origins despite its later onset (1,3). A common feature of these
conditions is their high genetic contribution, as evidenced by
family-based studies (twin-based heritability estimates ~80%)
(4-6) and by large-scale genome-wide association studies
(GWASSs) (single nucleotide polymorphism [SNP]-based

derlying phenotypic presentation of these conditions remain
poorly understood. Epigenetic processes that modulate gene
expression, such as DNA methylation (DNAm), may be
promising molecular candidates as biological markers and
mediators of genetic and environmental influences on neu-
rodevelopmental risk.

DNAm from peripheral blood is increasingly being used in
clinical genetics to diagnose Mendelian NDCs (e.g., Kabuki
syndrome), showing utility in differentiating complex cases
with ambiguous presentation compared with genetic data
alone (8). In contrast, the extent to which genetic susceptibility
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to complex (polygenic) NDCs is associated with DNAm is less
clear. A limited set of studies has examined whether
GWAS-derived polygenic scores (PGSs) for ASD, ADHD, and
SCZ are associated with DNAm patterns, irrespective of
diagnosis (all case-control, n < 1300) (9-11). Using an ASD
PGS, Hannon et al. identified genome-wide associations with
DNAm from neonatal heel pricks at 2 CpGs (9). Mooney et al.
(10) found that an ADHD PGS was associated with saliva-
derived DNAm in mid-to-late childhood at 1 CpG. Finally, a
SCZ PGS was associated with adult blood DNAm at 2 CpGs,
but those findings were not replicated in an independent
cohort (11). For ASD and ADHD, DNAm patterns were more
strongly associated with the PGSs than with diagnoses (9,10).

While these studies provide preliminary support for a link
between genetic susceptibility to NDCs and DNAm, key gaps
remain. First, studies have focused exclusively on clinical
case-control samples (9-11), and associations in the general
population remain uncharacterized. This is important given the
dimensional nature of NDCs, with a diagnosis of ADHD, ASD,
or SCZ representing the tail end of the continuum. Further-
more, DNAm patterns are developmentally dynamic and tis-
sue specific (12), and existing studies have varied in the age
and tissue of DNAmM assessment (i.e., neonatal heel pricks,
saliva in childhood, blood in adulthood). Growing evidence
suggests that DNAm variation at birth may be a particularly
informative marker of NDCs, with several recent studies
identifying cord blood DNAm as a stronger predictor of neu-
rodevelopmental risk than DNAm measured during childhood.
Potentially, cord blood DNAm represents a better proxy for
congenital effects associated with NDCs, with this signal
becoming noisier over time [e.g., due to postnatal exposures
and immune-related changes (12)]. The fact that cord blood
DNAm also precedes symptom onset makes it an especially
promising tissue for early risk prediction while minimizing
reverse causality. Second, studies have focused on PGSs for
individual NDCs in isolation when investigating associations
with DNAm despite evidence of their genetic and phenotypic
overlap (7). Examining multiple PGSs within the same in-
dividuals would offer a valuable opportunity to characterize
unique versus shared epigenetic correlates of genetic sus-
ceptibility across conditions. Finally, no research has exam-
ined the potential utility of PGS-associated epigenetic marks
in predicting (neuro)developmental outcomes. Given that
PGSs explain little variance in NDCs in the general pediatric
population, examining whether incorporating additional infor-
mation on genetic susceptibility from another regulatory level
amplifies PGS prediction could have important implications
for early risk detection (13).

To address these gaps, we conducted a large-scale
epigenome-wide association meta-analysis of genetic
susceptibility to ASD (ASD PGS), ADHD (ADHD PGS), and
SCZ (SCZ PGS), leveraging individual participant data from 4
population-based prospective cohorts with DNAm obtained in
the same tissue and at the same time point (cord blood at
birth), with a total combined sample size of 5802 participants
from Northern European datasets. Specifically, we 1) investi-
gated epigenome-wide associations of PGSs with cord blood
DNAm in the general population (probe and region level) and
performed follow-up characterization to examine genetic in-
fluences (i.e., methylation quantitative trait loci [mQTL] and
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twin heritability estimates), associations with gene expression,
blood-brain concordance, enrichment for correlated regions
of systemic interindividual variation (CoRSIVs) and functional
pathways, and developmental dynamics of identified signals;
2) examined whether epigenetic patterns are distinct or shared
across genetic susceptibilities; and 3) explored whether
incorporating a DNAm-based measure of genetic suscepti-
bility at birth amplifies PGS prediction of neurodevelopmental
outcomes across childhood (see Figure 1 for graphical
abstract).

METHODS AND MATERIALS

Study Population

This study features 4 North European population-based birth
cohorts: the Generation R Study (GenR) (14), the PREDO
(Prediction and Prevention of Preeclampsia and Intrauterine
Growth Restriction) study (15), the ALSPAC (Avon Longitudi-
nal Study of Parents and Children) (16), and the MoBa (Nor-
wegian Mother, Father, and Child Cohort Study) (17). Inclusion
criteria and cohort-specific descriptions of methods can be
found in the Supplement. Final meta-analyses included 5802
participants (Table 1). This study was conducted according to
the Helsinki Declaration of the World Medical Association, and
written informed consent was provided by all participating
mothers.

Genetic Susceptibility for NDCs

We calculated PGSs with the latest GWAS summary statistics
for 3 NDCs: ASD (ASD PGS), ADHD (ADHD PGS), and SCZ
(SCZ PGS) (18-20) using PRSice2 (default settings) (21). First,
we clumped correlated SNPs within a 250-kb window at an R?
threshold of 0.1. Second, PGSs were thresholded by calcu-
lating PGSs against multiple p-value thresholds (only SNPs
with a GWAS p value below threshold were included in the
PGS) and selecting the threshold for which each PGS explains
the most variance in diagnosis-related measures across co-
horts (0.5 for the ASD PGS and 0.01 for the ADHD PGS). For
the SCZ PGS, we used a fixed threshold (p < .05), consistent
with the original GWAS (18), due to the lack of SCZ measures
in most cohorts. Detailed descriptions of genotyping and PGS
calculation are available in the Supplement.

DNA Methylation

DNAm was extracted from cord blood and bisulfite-
converted with the EZ-96 DNA Methylation kit (Zymo
Research Corporation). Samples were run on the lllumina
Infinium HumanMethylation450 BeadChip (450K) or Methyl-
ationEPIC BeadChip (EPIC), which include 485,577 and
867,531 CpGs, respectively. DNAmM beta values were win-
sorized (> median * 3 IQR) to reduce the influence of outliers.
We excluded sites only available in one cohort and sites that
are cross-reactive or polymorphic (indicated by the R pack-
age maxprobes; https://github.com/markgene/maxprobes),
leaving 795,580 sites (380,778 EPIC only; n = 2504 [43.5%)]
run on EPIC). Cohort-specific quality control and normaliza-
tion procedures are described in the Supplement.
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Genetic susceptibility to neurodevelopmental conditions (NDCs) associates with neonatal DNA
methylation patterns in the general population: an individval participant data meta-analysis.
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Figure 1. Graphical abstract. ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; DNAm, DNA methylation; EWAS, epigenome-
wide association study; MoBa, Norwegian Mother, Father, and Child Cohort Study; MPS, methylation profile score; NDC, neurodevelopmental condition;
PGS, polygenic score; PREDO, Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction; SCZ, schizophrenia.

Covariates

Covariates included sex, gestational age at birth, and prenatal
maternal smoking assessed by DNAm (for comparability
across cohorts); cell-type proportions estimated via the
combined cord blood reference panel (22); genomic principal
components to adjust for population stratification; and tech-
nical covariates (e.g., sample plate) to adjust for batch effects
(differing per cohort) (for full details, see the Supplement).

Analyses

Step 1: Epigenome-Wide Associations. In each cohort,
a probe-level epigenome-wide association study (EWAS) was
performed to assess associations between PGSs and DNAm
at birth with covariate adjustment, separately for each PGS
and CpG. We ran robust linear regression analyses, which are
less sensitive to potential heteroscedasticity and influential
outliers, using the MASS R package. Findings from individual
cohorts were pooled with inverse-variance weighted fixed
effects meta-analysis with METAL [EWAS-MA (23)]. To assess
the stability of probe-level results, a leave-one-out meta-
analysis was performed for the top 10 significant hits per PGS.
In addition, we performed regional analyses examining

differentially methylated regions (DMRs) with the dmrff R package
(24) based on the same association models used in the probe-
level EWAS analyses (PGS as predictor, DNAmM as outcome,
adjusted for covariates). DMRs were defined by grouping CpGs
no more than 500 base pairs apart, with a nominal p < .05 for the
association with the phenotype and consistent direction of effect,
following the default settings of the dmrff package. In both probe-
level and regional analyses, associations were defined as
genome-wide significant at a threshold of p < 9 X 1078 (Bon-
ferroni-corrected for the number of effective tests) (25) and sug-
gestive at p < 5 X 1075, Suggestive results were functionally
characterized using publicly available resources (Table 2).
Enrichment was tested against background (450K only due to the
availability of resources) using Fisher’s exact test, where signifi-
cance was deemed nominal at p < .05.

Step 2: Cross-NDC Comparisons. First, we examined
correlations across PGSs. Second, we identified CpGs shared
across the PGS-specific EWAS-MA results, defined as CpGs
showing suggestive associations with >2 PGSs. Third, we
pooled pairwise EWAS-MA results with inverse-variance
weighted fixed effects meta-analysis (cross-NDC meta-
analyses) in METAL. We examined heterogeneity () statistics

Biological Psychiatry m m, 2025; m:m—m www.sobp.org/journal 3
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Table 1. Population Characteristics for Each Subcohort

Genetic Susceptibility and DNA Methylation

Characteristic GenRysok GenRepic PREDO ALSPAC MoBa-1 MoBa-2 MoBa-4 MoBa-8
Cohort Characteristics
Cohort GenR GenR PREDO ALSPAC MoBa MoBa MoBa MoBa
Country NL NL FI UK NO NO NO NO
Sample size 1317 1097 767 731 355 128 739 668
DNAm array for cord blood 450K EPIC 450K 450K 450K 450K EPIC EPIC
Child Characteristics
Child sex, female 657 (49.1%) 568 (51.8%) 362 (47.2%) 372 (50.9%) 169 (47.5%) 70 (53.9%) 362 (51.3%) 353 (54.6%)

Gestational age at birth, weeks 401 =15 400+15 398=16 396+15 39615 394=15 396 =17 39619
Maternal Characteristics
Age, years 31742 314+43 333=x58 29845 - - - -
Self-reported smoking during pregnancy, 275 (23.0%) 227 (22.9%) 31 (4.0%) 75 (10.3%) 40 (11.2%) 12 (10.9%) 55 (9.6%) 67 (12.2%)
yes
Educational level, low 24 (1.8%) 45 (4.2%) 335 (43.7%) 109 (15.1%) 6 (1.8%) 4 (3.3%) 12 (1.8%) 8 (1.3%)

Educational level, medium 426 (32.8%) 377 (35.3%)

Educational level, high 848 (65.3%) 645 (60.4%)

173 (22.6%)
239 (31.2%)

457 (63.3%)
156 (21.6%)

133 (33.3%) 33 (27.3%) 225 (33.4%) 199 (32.3%)
220 (64.9%) 84 (69.4%) 437 (64.8%) 410 (66.5%)

Values are presented as n (%) or mean = SD. Missing data for maternal characteristic variables resulted in percentages that do not total 100%. Self-reported smoking
is shown here as more directly interpretable than prenatal maternal smoking as assessed by DNAm. Rates of low/medium/high education are not directly comparable
across cohorts because educational systems differ between countries. See the Supplement for specific definitions. 450K indicates the lllumina Infinium
HumanMethylation450 BeadChip. EPIC indicates the lllumina MethylationEPIC BeadChip.

ALSPAC, Avon Longitudinal Study of Parents and Children; DNAm, DNA methylation; Fl, Finland; GenR, Generation R; MoBa, Norwegian Mother, Father, and Child
Cohort Study; NL, the Netherlands; NO, Norway; PREDO, Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction; UK, United Kingdom.

for suggestive sites, which quantifies the proportion of variance
across PGS-specific EWAS-MA results attributable to hetero-
geneity rather than chance. Lower /° values indicate that
epigenetic associations across the compared PGSs are more
similar. Significance was defined as nominal at p < .05.

Step 3: Phenotypic Associations. Finally, we built a
DNAm-based measure of genetic susceptibility by constructing
methylation profile scores (MPSs) for each PGS at birth. These
MPSs capture the broader epigenetic signal associated with
genetic susceptibility for ASD, ADHD, and SCZ, offering a more
comprehensive representation of underlying patterns than single-
probe analyses alone (26). We assessed whether these MPSs
explain additional variance in (neuro)developmental outcomes
beyond the PGSs. To avoid overfitting, we reran the EWAS-MAs
after removing one dataset, which we used as a target sample
(GenRgpic, n = 1097). We multiplied the EWAS-MA weights for
suggestive sites (p < 5 X 10~°) with methylation beta values in
GenRepic, performed clumping based on co-methylation patterns
within GenRgpic, and aggregated weighted sites into a single
score, similar to PGS calculation. As a baseline, we examined the
incremental variance explained by PGS, above covariates,
in (neuro)developmental phenotypes. Next, we evaluated incre-
mental variance explained by the MPS above the PGS and
covariates. Significance was defined phenotype-wide as p < 8 X
10~* [Bonferroni-corrected for the number of effective tests n =
61, Galwey method (27)] and nominally at p < .05.

Further details about steps 1 to 3 are provided in the
Supplement.

RESULTS

Study Characteristics

A total of 5802 participants (50.2% female) were included in
this study (Table 1). Gestational age at birth was similar across
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cohorts; however, rates of self-reported pregnancy smoking
(any) ranged from 9.6% in MoBa-4 to 23.0% in GenR.

Epigenome-Wide Associations of Genetic
Susceptibility for NDCs and DNAm at Birth

In probe-level analyses, the ASD PGS was associated with
DNAm at 8 CpGs at birth after Bonferroni correction (p < 9 X
1078, in total 74 suggestiveatp <5 X 10’5), all of which were
located on chromosome 8 close to the MFHAST and FDFT1
genes (Table S1) and several suggestive sites present only on
the EPIC array (55%). No probe-level hits were identified for
the ADHD PGS after Bonferroni correction (36 suggestive,
42% EPIC only) (Table S2). In contrast, the SCZ PGS was
associated with DNAm at 246 CpGs after Bonferroni correc-
tion (517 suggestive, 12% EPIC only) (Table S3). Many of
these sites were on chromosome 6 (96% at p < 9 X 1078,
87% suggestive), mostly within the major histocompatibility
complex (MHC) (between positions 29,640,000 and
33,120,000; 62% at p < 9 X 1078, 61% suggestive). EWAS-
MA results showed no indication of genomic inflation (Figure 2),
leave-one-out results indicated that associations were unlikely
to be driven by a single cohort (Figure S1), and within-condition
heterogeneity was low (ADHD PGS and ASD PGS) to moderate
(SCZ PGS) (Supplemental Results).

We further explored the role of the MHC region in the Gen-
Repic sample, which provides the largest sample size with the
most recent and more complete EPIC array data. We revisited
the SCZ PGS EWAS, introducing 2 new SCZ PGSs that omit
SNPs within the MHC locus (chr6:25,000,000-35,000,000). For
the first PGS (PGS SCZganki), We excluded the MHC region
(chr6:25,000,000-35,000,000) while preserving the broader
surrounding area of rs115329265 (chr6:28,303,247-28,712,247).
For the second PGS (PGS SCZygiant), We excluded the
MHC region (chr6:25,000,000-35,000,000) while preserving
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Table 2. Functional Characterization of Probe-Level and Region-Level Suggestive Sites, p < 5 x 10°°

Probe Level

Region Level

ADHD PGS, 36
Suggestive Sites,
42% EPIC Only

ASD PGS, 74 Suggestive
Sites, 55% EPIC Only

SCZ PGS, 517 Suggestive
Sites, 12% EPIC Only

ASD PGS, 251
Regions Including
1335 Suggestive
Sites, 4.6% EPIC

Only

ADHD PGS, 305 Regions
Including 1635 Suggestive
Sites, 5.6% EPIC Only

SCZ PGS, 297 Regions
Including 1564
Suggestive Sites, 5.6%
EPIC Only

Blood mQTL through the
GoDMC database (http://
www.godmec.org.uk/)

Average Twin Heritability
Estimates (http://www.
epigenomicslab.com/
online-data-resources)

HELIX Web Catalog: to test
whether the identified top
hits are associated with
gene expression changes in
blood by eQTM mapping
(https://helixomics.isglobal.
org/)

Average Blood-Brain
Correlation: to probe cross-
tissue correspondence of
the identified sites (BECon)
(https://redgar598.
shinyapps.io/BECon/)

MissMethyl Package: to
identify enrichment for
broader molecular pathways
and functions (GO
Collection) (for the full list,
see Tables S12-S14)

Number of CoRSIVs: these
regions are intercorrelated
over long genomic
distances and conserved
across ancestry and tissue
because they were
established before cell-type
differentiation, especially
sensitive to periconception
environment (28)

24 sites (73%),
significantly more than
background, p = .001

11 sites (52%), not
significant, p = .270

30% [range 0-86%],
significantly more than
background, p = .016

38% [range 0-89%],
significantly more
than background,
p = .006

7 sites (21%), significantly 4 sites (19%),
more than background, significantly more
p =.001 than background,

p =.016

0.04 [range —0.45 to 0.56] 0.01 [range —0.52 to
0.30]

No enrichment No enrichment

1 site (3%), not
significantly more than
background, p = .087

No enrichment

379 sites (83%), significantly
more than background,
p=3.0x10"°

51% [range 0-99%],
significantly more than
background, p = 1.3 X
10772

203 sites (45%), significantly
more than background,
p=62x 1014

0.11 [range —0.56 to 0.85]

166 pathways, mainly
adaptive immune system;
45 when restricted to
epigenome-wide significant
hits, p < 9 X 1078

29 sites (6%), significantly
exceeding background,
p=89x107%itis
noteworthy that CoRSIVs
constitute only 0.4% of the
background sites

689 sites (54%),
significantly more
than background,
p=286x10"1°

24% [range 0-99%)],
significantly more
than background,
p=55x10"2¢

112 sites (9%),
significantly more
than background,
p=14x10"°

0.01 [range —0.47 to
0.71]

No enrichment

14 sites (<1%),
significantly more
than background,
p=18x10"°

870 sites (56%), significantly
more than background, p =
3.0x 1078

24% [range 0-98%)],
significantly more than
background, p = 2.6 X
10732

137 sites (9%), significantly
more than background,
p=87x10"17

—0.01 [range —0.62 to 0.75]

No enrichment

9 sites (<1%), significantly
more than background,
p =.044

976 sites (66%), not
significant, p = .082

19% [range 0-99%)],
significantly more than
background, p = 1.5 X
1078

84 sites (6%), not
significant, p = .099

—0.02 [range —0.61 to
0.74]

No enrichment

9 sites (<1%), significantly
more than background,
p=.024
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Table 2. Continued

Probe Level Region Level
ASD PGS, 251
Regions Including SCZ PGS, 297 Regions
ADHD PGS, 36 1335 Suggestive ADHD PGS, 305 Regions Including 1564
ASD PGS, 74 Suggestive  Suggestive Sites, SCZ PGS, 517 Suggestive  Sites, 4.6% EPIC  Including 1635 Suggestive  Suggestive Sites, 5.6%
Sites, 55% EPIC Only 42% EPIC Only Sites, 12% EPIC Only Only Sites, 5.6% EPIC Only EPIC Only
EpiDelta Tool: characterizes No significant differences  No significant Compared with background, = Compared with Compared with background, = Compared with
longitudinal epigenetic differences significantly more nonlinear background, significantly more background,

1) increase/decrease in
methylation across

significantly more
1) increase/decrease in

changes in DNAm across
childhood, p = 1.0 x 1073

significantly more
1) increase/

changes over the first 2
decades of life (http://

epidelta.mrcieu.ac.uk/), decrease in childhood, p = 2.6 X 10719, methylation across
checked for 1) increase or methylation 2) nonlinear changes, childhood, p = 2.3 X
decrease in methylation across childhood, p =3.1 x 107'°, and 107 "2 and 2) nonlinear
across childhood, 2) p=16x10"" 3) intraindividual changes, p = .007

nonlinearity of change, or 3) differences, p = .040
differences in interindividual

variability
Health conditions, protein

EWAS Catalog: to see whether Health conditions, protein  Health conditions, Several psychiatric ~ Several psychiatric conditions Several psychiatric

hits were identified in
association with other
phenotypes in previous
EWASSs (44). (Here only

levels, ADHD, smoking,
alcohol consumption

protein levels

levels, several psychiatric
conditions (e.g., SCZ,
ADHD, and depression),
neurocognitive conditions

conditions (e.g.,
SCZ, psychosis,
substance abuse),
neurocognitive

(e.g., SCZ, psychosis,
aggressive behavior,

depression, substance
abuse), neurocognitive

conditions (e.g., SCZ,
psychosis, aggressive
behavior, depression,
substance abuse,

conditions, and adversities
(e.g., child abuse)

(e.g., mild cognitive conditions, and ADHD), neurocognitive
impairment and Alzheimer’s adversities (e.g., conditions, and
disease), and adversities child abuse) adversities (e.g., child

(e.g., child abuse) abuse)

notable traits are listed; for
the full list, see Tables S15
and S16)

We note that all these tools, except missMethyl, are only available for probes on the 450K array. Functional enrichment for suggestive probes was compared with background CpGs (array-wide DNAm, only 450K)
using Fisher’s exact test (nominally significant at p < .05). More extensive information on functional characterization is available in Tables S1-S3. EPIC indicates the lllumina MethylationEPIC BeadChip.

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; CoRSIV, correlated region of systemic interindividual variation; DNAm, DNA methylation; eQTM, expression quantitative trait
methylation; EWAS, epigenome-wide association study; GO, gene ontology; mQTL, methylation quantitative trait loci; PGS, polygenic score; SCZ, schizophrenia.
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Figure 2. Manhattan plots and related quantile-quantile plots. Manhattan plots show which CpGs are associated with genetic susceptibility to neuro-
developmental conditions, with the gray dotted line indicating the epigenome-wide significance of p < 9 x 1078, ADHD, attention-deficit/hyperactivity

disorder; ASD, autism spectrum disorder.

rs115329265 (6:28,712,247; more stringent) (18). We reran the
EWAS in GenRgpc using the original PGS SCZ, the PGS
SCZgank1, and the PGS SCZy4iant- For the original PGS SCZ, we
identified 9 EWAS-level hits (o < 9 X 1078; 165 suggestive at p <
5 X 10’5). Of those, 4 were located in the MHC (p < 9 X 1078
53 suggestive). For the PGS SCZganky, we found 11 EWAS-level
hits (o < 9 X 1078, 171 suggestive), none of which resided within
the MHC. Similarly, for the PGS SCZygiant, We identified 11
EWAS-level hits (all overlapping with PGS-SCZganki; p < 9 X
1078, 172 suggestive), including one within the MHC. While
EWAS-level hits were identical across both scores, 3 CpGs were
uniquely identified at the suggestive threshold (Figure S2).

In region-level analyses (combining proximal CpGs into a
smaller set of DNAm regions), a large number of DMRs were
identified for all 3 PGSs, with 130 regions associated with the
ASD PGS (p < 9 X 1078, 251 at p < 5 X 107%), 166 regions
with the ADHD PGS (305 suggestive), and 157 regions with the
SCZ PGS (297 suggestive, Tables S4-S6). Regions over-
lapped only slightly with probe-level results (genes over-
lapping between probe-level and region-level results: ASD
PGS, 5.4%; ADHD PGS, 7.4%; SCZ PGS, 12.4%).

Follow-up analyses (Table 2) indicated that probes across
all 3 PGSs showed greater genetic influence as expected

(blood mQTLs, higher twin heritability estimates) and associ-
ations with gene expression compared with background
signal. In addition, probe-level SCZ PGS sites, compared with
ASD PGS and ADHD PGS sites, showed greater 1) blood-
brain concordance, 2) representation of CoRSIVs, 3) enrich-
ment for biological pathways (particularly related to adaptive
immune response), 4) nonlinear change across childhood, and
5) more reported links to psychiatric disorders, neurocognitive
conditions, and adversities, based on existing EWAS studies
(Tables S1-S3). These patterns were largely driven by the
MHC locus because the results were attenuated when ana-
lyses were restricted to suggestive SCZ PGS hits outside this
locus (GenRgpic only, Table S7).

Cross-NDC Comparisons

The ASD PGS and ADHD PGS (r = 0.18) were more strongly
correlated with each other than with the SCZ PGS
(r = 0.08-0.09, p < .001) (Figure 3A). Furthermore, while
probe-level methylation patterns of genetic susceptibility for
NDCs were largely unrelated, 3 suggestive sites (p < 5 X
107°) were shared between the ASD PGS and the ADHD
PGS (cg19034770, cg15741354, and cg11548083) but not
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with the SCZ PGS (Figure 3B). A considerable proportion of
variance in methylation patterns across PGSs could be
attributed to heterogeneity (mean variability explained by
heterogeneity > 74.1%) (Figure 3C and Table S8). Notably,
only 7.5% of ASD PGS sites, 20% of ADHD PGS sites, and
4.8% of SCZ PGS sites were homogeneous across condi-
tions (i.e., nonsignificant heterogeneity [p > .05] and
consistent directional effects).

Phenotypic Associations

In our target sample (GenRgpic, n = 1097), MPSs were
significantly correlated with their corresponding PGSs (PGS
ASD: r=0.17, p < .001; PGS ADHD: r = 0.14, p < .001; PGS
SCZ: r = 0.23, p < .001). Combined, PGSs and MPSs
accounted for up to 2.7% of variance in phenotypes beyond
covariates, with MPSs uniquely contributing approximately 1
percentage point. The ASD PGS showed Bonferroni-corrected
associations above covariates with 4 of 130 outcomes (p <
8 X 10% nominally at p < .05 with 20 of 130), the ADHD PGS
with 11 of 130 outcomes (nominally 43 of 130), and the SCZ
PGS with 1 of 130 outcomes (nominally 38 of 130), all above
covariates. The MPSs did not show any Bonferroni-corrected
associations above covariates and PGSs. Nominal increased
variance (p < .05) was found for 1) the MPSasp.pgs in ADHD
symptoms, 1Q, and number sequencing abilities; 2) the
MPSapHp-pas in attention and total emotional and behavioral
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problems, ADHD diagnosis, language comprehension, num-
ber sequencing, height, and IQ; and 3) the MPSgcz_pgs in child
gross motor skills (Figure 4). Detailed results are shown in
Tables S9-S11 and Figure S3.

DISCUSSION

We examined whether genetic susceptibility to NDCs is
associated with DNAm patterns in cord blood, pooling data
from 4 population-based cohorts totaling almost 6000 par-
ticipants. Our meta-analytic EWAS revealed strong probe-
level associations between genetic susceptibility to SCZ and
neonatal DNAm (246 hits) compared with ASD (8 hits) and
ADHD (none). SCZ PGS hits were mainly located within the
MHC on chromosome 6, a well-established genetic risk locus
for SCZ. In contrast to probe-level hits, region-level analyses
detected many DMRs across all 3 PGSs (130-166 regions).
PGSs showed little overlap in their DNAm associations, sug-
gesting largely distinct epigenetic signals. Finally, DNAm-
based scores of genetic susceptibility per NDC nominally
increased variance in several developmental outcomes over
the use of genetic data alone.

Our findings suggest that part of the polygenic contribution
for SCZ is detectable epigenetically in the general population,
even with a modest sample size relative to the case-control
GWAS used to calculate the SCZ PGS (n > 200,000).
Observing a strong signal already at birth provides additional
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support for an early-origins perspective of SCZ (3). Previous
studies have demonstrated that SCZ-associated genes are
highly expressed in the placenta (28) and fetal brain (18,29);
we extend these findings by showing that associations are
also present at a gene regulatory level at birth. Perhaps un-
surprisingly, our EWAS findings aligned closely with the dis-
covery GWAS (18). Most identified hits clustered on
chromosome 6, with 62% situated within the MHC (including
our top hit cg14345882, p = 3.9 X 10735, annotated to the
promoter region of BTN3A2), likely because of the linkage
disequilibrium pattern of this region. The MHC region is the
strongest known genetic risk locus for SCZ (30), playing a key
role in immune function [e.g., encoding proteins for antigen
presentation (31)] alongside neurodevelopmental and brain-
related processes [e.g., synaptic pruning (30)]. Other hits
mapped to loci were linked to immune and neuro-
developmental functions, although not all GWAS peaks were
mirrored epigenetically. Future work may clarify whether such
discrepancies reflect timing, tissue specificity, or indirect
pathways.

Substantially fewer hits were identified in the same sample
for the ASD PGS and the ADHD PGS. These differences are
unlikely to stem from a single definitive cause, but they may
reflect a combination of methodological and biological factors.
First, fewer hits might have been identified due to limited
informativeness of the PGSs because of the smaller sample
size of the discovery GWAS [ASD: 18,381 individuals diag-
nosed and 27,969 control participants; ADHD: 38,691 in-
dividuals diagnosed and 186,843 control participants; SCZ:
76,755 individuals diagnosed and 243,649 control participants
(18-20)]. However, GWAS power does not entirely explain our
pattern of findings because we identified no hits for the ADHD
PGS but 8 hits for the ASD PGS (lowest GWAS sample size).

All ASD PGS hits were located on chromosome 8 (1.0-1.9 Mb
from ASD GWAS loci C8orf74, SOX7, PINX1) in MFHAST,
involved in modulating the innate immune system (32), and in/
close to FDFT1, a gene implicated in the biosynthesis of
cholesterol (33). The latter is noteworthy because of a po-
tential role for cholesterol metabolism in ASD. For example,
several ASD-related genetic syndromes such as fragile X
syndrome and Smith-Lemli-Opitz syndrome involve disrupted
cholesterol biosynthesis (34,35). Second, differences in hits
across conditions may be due to the use of a different
thresholding approach for the SCZ PGS (literature derived due
to the lack of available phenotype data) compared with the
ASD and ADHD PGSs (based on in-sample parameter opti-
mization). Third, the biological relevance of DNAm in cord
blood may differ across conditions. For example, many SCZ
genetic susceptibility-associated CpGs mapped to immune-
related pathways in the MHC region, a signal only seen for
the SCZ PGS. Unlike the stark differences in signal observed
at a probe level, we identified a similarly large number of
DMRs across all 3 PGSs. Notably, probe-level and region-
level results showed limited overlap, with each highlighting
distinct sets of CpGs. Thus, our analyses identified both iso-
lated CpGs with strong effects—particularly for SCZ—and
more widespread, but weaker, epigenetic differences across
conditions. These findings further indicate that the ASD PGS
and ADHD PGS also associated with neonatal DNAm but that
the epigenetic signal is more diffuse. It will be important for
future research to understand to what extent differences in
probe-level and region-level results are explained by meth-
odological (e.g., power of PGS) versus biological (e.g., diffuse
signals) reasons.

Three suggestive sites were linked to genetic susceptibility
to both ASD and ADHD (cg11548083, cg19034770, and
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cg15741354). Notably, cg11548083 is located on the MSRA
gene, encoding methionine sulfoxide reductase A, an enzyme
crucial for maintaining protein function and cellular integrity
under oxidative stress, which has been implicated in biological
aging (36). Interestingly, a previous cross-disorder GWAS re-
ported that a SNP within MSRA was associated with both ASD
and SCZ, but with opposing effects (37). Here, we observed
similar opposing effects for this CpG, where the PGS ASD was
associated with reduced DNAm levels, while notably, the PGS
ADHD rather than the SCZ PGS was associated with
increased DNAm levels. Beyond these shared sites, probe-
level epigenetic signals exhibited only a little overlap across
NDC PGSs. This may seem surprising given the known ge-
netic (and phenotypic) correlations between ASD, ADHD, and
SCZ. However, the magnitude of genetic correlations tends to
be modest, as was also observed in our data, leaving far more
variance that is unique to each condition.

We found that incorporating a DNAm-based measure of ge-
netic susceptibility at birth in addition to PGSs could increase
explained variance in developmental outcomes (nominal signifi-
cance). While this finding is preliminary and in need of replica-
tion, it supports continued examination of the utility of integrating
information on genetic susceptibility at multiple biological levels
(PGS, DNAm) to enhance the performance of early risk predic-
tion models. Although DNAm-based prediction tools are still
emerging, they hold considerable promise, particularly if their
development parallels the advances seen with PGSs (38). Future
studies with more well-powered datasets may want to focus
particularly on child attentional, cognitive, and motor outcomes
rather than emotional/behavioral symptoms or general growth
parameters because these showed the largest increases
in explained variance compared with other phenotypes. Poten-
tially, such phenotypes are more detectable due to biological
differences (i.e., a more pronounced fetal neurodevelopmental
component) or measurement-related factors, for example lower
measurement error and reporting bias. In addition, DNAm-based
measures of genetic susceptibility to ASD and ADHD both
associated prospectively with ADHD-related phenotypes,
whereas the DNAmM-based measures of genetic susceptibility to
SCZ only explained additional variance in early gross motor
abilities. This is consistent with previous evidence showing that
PGS SCZ correlated weakly with psychiatric symptoms in
childhood (39) but associated with early motor abilities (40). The
PGS SCZ and its corresponding MPS may become more pre-
dictive of mental health outcomes later in life because previous
studies have linked genetic susceptibility to SCZ to a range of
related outcomes, including depression and anxiety (41,42).
Because our phenotypic data end at age 14, longer follow-up will
be important to evaluate the predictive utility of SCZ PGS-
associated methylation into adulthood. Importantly, only 1% to
10% of children will develop one of these NDCs (43), which
raises questions about what factors interact with genetic sus-
ceptibilities to shape phenotypic expression during development
and whether DNAmM may be used in this context to improve risk
stratification because it responds dynamically to both genetic
and environmental influences.

Our findings need to be interpreted in light of some limita-
tions. First, although we focused on genetic influences on
DNAm (as captured by PGSs), this does not rule out potential
perinatal environmental effects. In particular, it will be important
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to establish whether findings reflect direct or indirect effects of
genetic susceptibility on DNAm. Additionally, we did not
explicitly investigate genetic pleiotropy, and observed associ-
ations may be driven by related NDCs that were not measured
(e.g., intellectual disability). Second, functional characterization
of suggestive probe- and region-level sites was based on ref-
erences largely derived from adult datasets, which may have
more limited applicability to our neonatal datasets. Third, while
we consider SCZ as an NDC, it is not included in this category in
the DSM-5, and its conceptualization as neurodevelopmental
remains a topic of debate. Fourth, our meta-analysis lacked
non-European datasets, limiting extrapolation to other pop-
ulations, and might have been influenced by selection bias, for
example the overrepresentation of healthy newborns. Finally,
while we identified numerous DNAm loci associated with ge-
netic susceptibility to NDCs, based on the findings, we cannot
ascertain their functional relevance or establish their role as a
potential causal pathway to NDC pathophysiology as opposed
to noncausal biomarkers for genetic susceptibility. Our work
also opens several promising research avenues: 1) replication of
findings and MPS effectiveness in other cohorts, particularly in
case-control settings, biobanks, or with linkage to electronic
health data, to confirm robustness of findings or when using
more detailed epigenotyping, specifically whole-genome bisul-
fite sequencing, interrogating up to ~28 million CpGs, to pro-
vide a more comprehensive picture; 2) experimental validation
of the identified DNAm sites or follow-up with transcriptome-
wide association studies would be instrumental in clarifying
their functional relevance; and 3) longitudinal follow-up of co-
horts to assess the stability of these DNAm patterns over time
and their impact on the phenotypic presentation of neuro-
developmental phenotypes would offer valuable insights into
their developmental and mechanistic relevance.

Conclusions

By combining genetic and epigenetic data at birth, our findings
lend novel insights into the early molecular correlates of genetic
susceptibility to ASD, ADHD, and SCZ. We identified strong
associations between the SCZ PGS and neonatal DNAm pat-
terns in the general population, particularly within the MHC
region, further supporting an early-origins perspective of SCZ
and its links to adaptive immunity. Associations of neonatal
DNAm with PGSs for ASD and ADHD were present but more
diffuse, possibly reflecting differences in the power of the dis-
covery GWAS. Epigenetic signals at birth were largely distinct
between NDC PGSs. Finally, we found preliminary evidence that
inclusion of methylation data may enhance genetic prediction
models of neurodevelopmental outcomes.
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