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Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-
environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how
peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is
by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in
adults. To bridge this gap, we established the Methylation, Imaging and NeuroDevelopment (MIND) Consortium, which aims to
bring a developmental focus to the emerging field of Neuroimaging Epigenetics by (i) promoting collaborative, adequately
powered developmental research via multi-cohort analyses; (ii) increasing scientific rigor through the establishment of shared
pipelines and open science practices; and (iii) advancing our understanding of DNA methylation-brain dynamics at different
developmental periods (from birth to emerging adulthood), by leveraging data from prospective, longitudinal pediatric studies.
MIND currently integrates 16 cohorts worldwide, comprising (repeated) measures of DNA methylation in peripheral tissues (blood,
buccal cells, and saliva) and neuroimaging by magnetic resonance imaging across up to five time points over a period of up to 21
years (Npooled DNAm= 12,877; Npooled neuroimaging= 10,899; Npooled combined= 6074). By triangulating associations across multiple
developmental time points and study types, we hope to generate new insights into the dynamic relationships between peripheral
DNA methylation and the brain, and how these ultimately relate to neurodevelopmental and psychiatric phenotypes.
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BACKGROUND
DNA methylation (DNAm) is an epigenetic process that can
regulate gene activity in response to both genetic and environ-
mental influences [1, 2], beginning in utero. While DNAm plays a
key role in healthy development and function [3], alterations in
DNAm have also been linked to the emergence of disease states,
including brain-based disorders such as neurodevelopmental,
psychiatric, and neurological conditions [4–10]. In addition,
peripheral markers of DNAm are often more accessible to measure
than several brain-based phenotypes. Together, these properties
make DNAm a promising molecular system in the search for both
biological markers and mechanisms underlying gene-environment
impacts on brain-based disorder and phenotypes. However, we
still know little about how peripheral DNAm patterns relate to
individual differences in the brain structure and function itself –
the target organ of interest.

To address this gap, a growing number of researchers have
examined associations between DNAm and brain features
(typically measured using magnetic resonance imaging; MRI),
giving rise to the new field of Neuroimaging Epigenetics [11–13].
Already more than 100 articles combining DNAm and brain MRI
have been published to date, but important limitations remain.
Most studies have assessed DNAm and the brain only at a single
(cross-sectional) time point, are based on adult samples (~80%),
have small to moderate sample sizes (median N= 98, range
14–715), and have primarily used a candidate gene approach (i.e.,
focusing on a limited set of CpGs; 67%). The first large-scale multi-
cohort investigations using an epigenome-wide approach are now
emerging; these generally show modest associations, with for
example only two CpGs in blood found to be associated with
hippocampal volume in a pooled analysis of 3337 participants
after genome-wide correction [14].
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WHY WAS THE CONSORTIUM SET UP?
Rapid advances in Neuroimaging Epigenetics have also been
accompanied by several key challenges. First, studies in this field
have been highly heterogeneous in terms of their design,
characteristics, and methodology, with few shared practices,
limiting comparability between findings and the identification of
robust Neuroimaging Epigenetic associations. Second, the reliance
on cross-sectional measurements, mainly in adults, likely ignores
important temporal dynamics, as both DNAm and brain structure
and volume are known vary over time [15–19] and in different
ways (i) depending on the region examined (i.e., where in the
genome or in the brain), (ii) in terms of their developmental
trajectory (i.e., linear or non-linear), (iii) in light of (sensitive)
periods with more change/growth (e.g., childhood and adoles-
cence), (iv) considering the directionality of associations (i.e.,
whether changes in DNAm predict changes in the brain or vice
versa), and (v) in association with different downstream pheno-
types (e.g., neurodevelopmental, psychiatric). For example, recent
evidence points to epigenetic ‘timing effects’ [6–8], whereby
DNAm patterns in cord blood at birth have been shown to
prospectively associate with certain neurodevelopmental pro-
blems in childhood (e.g., ADHD symptoms [6, 7], social commu-
nication deficits [8]) more strongly than DNAm patterns measured
cross-sectionally during childhood. Similar ‘timing effects’ have
also been reported for changes in brain volume, with the strength
of phenotypic associations varying depending on timing of
assessment [20]. Yet, how DNAm and neuroimaging measures
relate to each other at different developmental stages is largely
unknown. Finally, studies to date are typically based on single
cohorts with small sample sizes of n < 100, with limited statistical
power to detect what are likely to be small associations. While
neighboring fields have already showed how large-scale colla-
borative efforts between cohorts [21–24] can be achieved, such
initiatives at the intersection of epigenetics, imaging and
development are lacking.
Recently, we established The Methylation, Imaging and

NeuroDevelopment (MIND) Consortium to address these gaps.
Our overarching goal is to understand how peripheral DNAm
patterns relate to variation in brain structure and function across
development. Specifically, we aim to bring a developmental focus
to the emerging field of Neuroimaging Epigenetics by (i)
promoting collaborative, adequately powered developmental
research via multi-cohort analyses; (ii) increasing scientific rigor
through the establishment of shared pipelines and open science

practices; and (iii) elucidating directionality of associations
between DNAm and the brain via the use of prospective,
longitudinal cohorts across development (from birth through
emerging adulthood).

WHO IS IN THE CONSORTIUM AND WHAT HAS BEEN
MEASURED?
The MIND consortium brings together a global set of research
teams and cohorts from North America, South America, Asia,
Europe, African and Australia (Fig. 1). It currently includes 16
cohorts, spanning population-based, twin and high-risk cohorts.
The unifying feature of these cohorts is the availability of genome-
wide DNAm data (Illumina 450K or Illumina EPIC chip) and
neuroimaging data (e.g., T1-weighted images, diffusion-weighted
images, and/or resting state functional MRI) collected at one or
more time points across development, with at least one
assessment prior to age 18 years. Most cohorts have data from
fetal life into childhood, with several cohorts also covering
adolescence and early adulthood. With ongoing data collection
in many cohorts, new DNAm and neuroimaging data are also
expected to become available at additional time points. Key
characteristics of cohorts included in the MIND consortium can be
found in Table 1 and Fig. 2. Full cohort descriptions and study-
specific acknowledgements can be found in the Supplementary
Materials.
To date, the MIND cohorts comprise a total of 12,877

participants with DNAm profiles, 10,899 participants with neuroi-
maging data, and 6074 participants with both data types for
neuroimaging epigenetic analyses. This is a significant expansion
in sample size compared to the current average for developmental
neuroimaging epigenetic studies (median N= 80, range 33–715
[11]), enabling us to characterize time-varying DNAm-brain
associations in a more robust and nuanced manner. All cohorts
have at least one time point of measurement, but 94% have two
or more, up to five repeated time points. Cohorts participating in
MIND are also notably diverse, including participants from various
backgrounds in terms of ethnicity, geographical location and
socio-economic environments, enabling the investigation of
neuroimaging epigenetic associations across different settings,
and increasing the inclusivity and generalizability of the findings.
In addition, participants from most of the included cohorts have
undergone extensive environmental, molecular and phenotypic
profiling. As shown in Table 2, all cohorts have genetic data of

Fig. 1 World map of sample size per country (overlap DNAm and neuroimaging), as covered in MIND. Sample sizes reflect expected sample
size after sample processing (i.e., those featured in Table 1) and additionally include expected sample size for MTWinS (N= 708). Singapore is
also included but too small to be shown on the map.
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participants – and in some cases also for relatives – which can be
leveraged to account for population stratification, calculate
polygenic scores, investigate gene-environment correlations and
interactions as well as in some cases to study genetic nurture
effects (i.e., using trio genetic data). Further, most cohorts have
data on developmental and (mental) health outcomes, typically
comprising measures of neurodevelopment, behavior, cognition
and psychiatric symptoms, but also often feature other pheno-
types such as anthropometrics and physical health assessments.
Most cohorts have also measured environmental exposures,
typically beginning in utero for the birth-cohorts (e.g., maternal
smoking, diet, psychopathology and psychosocial stress during
pregnancy) and during childhood/adolescence (e.g., early life
stressors, parental influences, home environment and broader
socio-economic factors). Finally, almost all cohorts have data on
additional biological markers (e.g., inflammation) and profiling of

other omics (e.g., microRNAs, metabolomics, proteomics and the
gut microbiome).

HOW DO WE WORK TOGETHER?
MIND operates on a federated model, wherein methods, practices,
and results are shared among consortium members, while
maintaining the confidentiality of the underlying individual-level
data. Contributors have the flexibility to propose new projects,
which operate on an opt-in basis. Participation from different
cohorts in each project is optional and contingent on data
availability, data sharing policies, resource allocation, and cohort-
specific research interests. Similarly to consortia such as the
Pregnancy And Childhood Epigenetics (PACE) Consortium [22],
project leads are responsible for producing detailed analysis plans,
which wherever possible will be pre-registered for transparency,

Fig. 2 Time points and sample sizes of cohorts participating in MIND.
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and project leads will also be responsible for developing and
testing analysis scripts. In the case of meta-analytic projects,
scripts are disseminated across the consortium by the project lead
for implementation by participating cohorts, who then share
cohort-specific summary statistics with the project lead for
pooling of results. Options for mega-analyses (i.e., pooled analyses
of individual participant data) will also be explored in light of the
increasing availability and uptake of federated data sharing
platforms.

GETTING STARTED: IDENTIFYING AND ADDRESSING
CHALLENGES IN COLLABORATIVE RESEARCH ON
DEVELOPMENTAL NEUROIMAGING EPIGENETICS
Modeling (potentially) time-varying associations between two
high-dimensional data modalities within a consortium framework
offers new opportunities but also considerable challenges. Here,
we outline three anticipated challenges within MIND, and reflect
on potential strategies that could be used to address them (Fig. 3).

Challenge #1: Separating developmental from technical
variability
A key goal of MIND is to characterize neuroimaging epigenetic
associations across development. We therefore plan to integrate
data from cohorts covering different ages and developmental
periods. While all cohorts in MIND have collected DNAm and
neuroimaging data using comparable techniques, they still show
substantial variability in sample characteristics and data proces-
sing methods. Notably, technical variability could increase
generalizability of findings, e.g., MIND findings are more general-
izable when using a range of methods, whereas studies using a
single technique alone may be less generalizable to cases where
different techniques are used. Yet, technical variability also
complicates integration of different findings across cohorts.
Furthermore, sources of technical variability across cohorts are
tied to (or coincide with) differences in the timing of assessments,

making it difficult to separate (developmental) signal from
(technical) noise. This raises the challenge of balancing the need
of maximizing statistical power (typically by increasing pooled
sample size as much as possible) with maximizing comparability
across diverse cohorts (instead calling for more focused pooling of
data based on shared characteristics). We highlight below main
sources of variability in sample characteristics, DNAm, and
neuroimaging.

Sample characteristics
MIND cohorts vary widely with respect to sample size, from
numerous smaller studies with neonatal MRI (e.g., N= 86, UCI
cohort) to larger cohorts with MRI data at different time points in
childhood and adolescence (N= 822 at around age 18, ALSPAC
cohort). This variation in sample size leads to uneven data
availability across different developmental periods, resulting in
unbalanced representation and differences in statistical power
between these developmental periods. Furthermore, while almost
all cohorts have repeated measures of DNAm or neuroimaging (or
both), a small number has only a single time point available. This
discrepancy results in partial overlap of samples when analyzing
different developmental periods. In other words, the same group of
participants is not consistently tracked across all time points in every
study. To complicate matters, the ‘spacing’ of time points between
DNAm and neuroimaging differs between cohorts. For example,
while some cohorts have both DNAm and neuroimaging available
in the neonatal period (maximum gap of a few weeks), others have
DNAm at birth but only started with neuroimaging assessments in
mid-childhood, resulting in a gap of several years. To address these
sample differences, careful consideration of covariates (e.g., age at
DNAm and neuroimaging assessments and the time gap between
them) as well as methods to address partial sample overlap and
sample size imbalance across cohorts (e.g., through the use of
weighted approaches and leave-one-out analyses to test the
stability of results) will be needed. Moreover, sex is a key covariate
for consideration in DNAm-neuroimaging analyses. Studies have

Fig. 3 Key challenges in Neuroimaging Epigenetics. Created in https://BioRender.com.
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reported widespread autosomal sex differences in DNAmethylation
as early as at birth, with sex-differentiated sites enriched in genes
related to nervous system development and mental health
phenotypes [25, 26]. These differences may contribute to the
observed sex disparities in psychiatric outcomes. Similarly, brain
structure development also follows sex-dependent trajectories [27].
Given these findings, sex will be systematically accounted for in
MIND analyses as a covariate, or where possible examined as a
potential moderator through interaction analyses, to better under-
stand the role of sex in DNAm-neuroimaging associations.

DNAm
Another source of variability across studies is in how DNAm is
measured, both in terms of DNAm array and tissue examined. The
type of DNAm array used varies not only between MIND cohorts
but at times also within longitudinal cohorts. The gold standard for
DNAm assessment is whole-genome bisulfite sequencing (WGBS),
offering single-nucleotide precision and covering about 95% of all
CpGs on the genome, or roughly 28 million CpG sites [28].
However, its high cost and computational burden limits its use in
large-scale cohorts. As an alternative, Illumina has developed a
series of more affordable BeadChip microarrays, starting with the
HumanMethylation27 BeadChip in 2008, expanding to over
450,000 CpGs with the 450 K array in 2011 [29], to over 850,000
CpGs with the EPICv1 in 2016 [30] and featuring an additional
186,000 CpGs with EPICv2 in 2023 [31]. The latest version, the
Methylation Screening Array (MSA), contains over 284,000 probes
of which only around 145,000 overlap with EPICv2 [32]. The cost-
effective nature of these arrays (~3 times cheaper than WGBS) has
made it possible for cohorts to measure hundreds of thousands of
CpGs across the genome in larger samples, and as a result these
methods have been eagerly adopted by many cohort studies. Yet,
DNAm arrays and their technology change over time, and while
these changes are marked by the removal of poor-quality sites
[33] and addition of new probes with evidence for biological or
clinical importance, the availability of data across several arrays
presents challenges for longitudinal cohorts transitioning between
versions. The discrepancies at the individual CpG level could
reduce consistency in longitudinal research [34, 35]. Consequently,
it may be difficult for longitudinal cohorts to distinguish between
developmental changes vs variations due to array or batch-related
factors, especially as measuring the same sample using multiple
arrays is hardly ever done. Fortunately, studies comparing arrays
have reported generally high concordance [31, 34–36].
Even within a single array, processing-related biases can arise,

particularly due to batch effects linked to plate assignment. For
instance, the 450 K BeadChip accommodates 12 samples per chip,
with a standard processing plate holding 8 chips, totaling
96 samples being processed per plate. Meanwhile, the EPICv1
and EPICv2 arrays accommodate 8 samples per chip, with 8 chips
per plate, allowing for a total of 64 samples being processed per
plate. These processing plates can introduce systematic biases,
which are especially problematic in longitudinal studies, where
plate effects may become confounded with time points if all
samples from a given time point are processed on the same plate.
To mitigate this, studies planning to generate repeated measures
of DNAm could apply a two-stage pseudo-randomization process,
whereby (i) samples from the same individual at different time
points are processed on the same plate, minimizing batch effects
in within-subject longitudinal analyses, while also (ii) ensuring that
individuals are adequately randomized across plates, to limit batch
effects in between-subject analyses. If new time points are added
to a cohort with an existing DNAm assessment, it would also be
recommended to run ‘bridge samples’ (i.e. re-estimating a set of
samples from the existing time point together with the new time
points), in order to better quantify - and control for – resulting
batch effects. This is for example the strategy that one of the
MIND cohorts, Generation R, has recently applied to its new

longitudinal epigenetic data (encompassing repeated DNAm
measures at age 6, 10, 14, and 18 years), whereby repeated
measures per individual were assigned to the same plate, and
bridge samples were run to link this new resource to existing
DNAm data at birth.
Another key challenge lies in the choice of tissue for DNAm

measurement [37, 38]. Since in vivo DNAm assessment in brain
tissue is not feasible, studies typically rely on peripheral DNAm
(measured in more accessible tissues) to investigate associations
with neuroimaging parameters. However, peripheral DNAm may
not accurately capture brain methylation patterns, as only ~10%
of CpG sites are estimated to be both variable in blood (range >
0.1) and concordant between blood and brain (based on
correlation, r > 0.33, brain region-dependent) [38]. These CpGs
can be identified using blood-brain methylation databases (e.g.,
BECon [38], Blood-Brain Comparison Tool [39], IMAGE-CpG [40]),
which provide cross-tissue comparisons. Alternatively, significant
findings can be validated using brain tissue derived from brain
banks (e.g., The Netherlands brain bank for psychiatry [41]).
However, in both cases, these data are primarily derived from
adult postmortem brain samples and are typically limited to
specific brain regions, leaving it unclear if these correlations
generalize to the developmental context, in vivo, across different
brain regions, or across different cell populations (neuronal versus
non-neuronal). Efforts are emerging to profile DNAm in post-
mortem brains from fetal life onwards, although these studies
have yet to establish the comparability of DNAm patterns
between brain and more accessible peripheral tissues [42, 43].
Notably, even when cross-tissue correspondence is low, peripheral
DNAm patterns may still be associated with brain features
measured by MRI and hold biological relevance – for example,
with blood-derived CpG sites reflecting inflammatory processes
that influence brain morphology or connectivity. Additionally,
such sites may have practical value in biomarker development,
serving as indicators of risk factors for poor brain health, such as
smoking.
In addition, there is also variability in across development [44].

At birth, DNAm is often measured from cord blood or other
accessible tissues such as placenta, whereas later in life, samples
are typically obtained from peripheral blood, saliva, or buccal cells.
Even within the same tissue, cell-type variability may exist (e.g.,
cord blood versus peripheral blood). Most cohorts collect DNAm in
only one tissue type, although MIND does feature a small subset of
cohorts that collected DNAm in multiple tissues (e.g., saliva and
blood, Kids2health). A common practice for many multi-cohort
studies (e.g., [6, 14, 45]), has been to focus on blood tissue,
including cord, heel prick and peripheral whole blood during
development. While utilizing data obtained from a single tissue
can enhance comparability and reduce noise between studies, it
can come at the cost of lower sample size and limited general-
izability to different tissues. Yet, even within the same tissue, cell-
type composition can change dramatically across development,
both in terms of the type and proportion of cells in bulk tissue. For
example, nucleated red blood cells (nRBCs) are abundant in cord
blood, but largely absent in blood later in development. Cell-type
composition in bulk tissue can be adjusted for using age/tissue-
appropriate reference panels (e.g., reference for cord blood versus
peripheral blood at later time points, [6, 45]). However, this also
introduces a further source of technical variability in longitudinal
analyses (given that each panel has been estimated using
different data sources). For example, a previous study characteriz-
ing DNAm trajectories across development found widespread
age-related changes in DNAm patterns over the first two decades
of life [15]. In some cases, these changes were non-linear (e.g.
DNAm changing more rapidly from birth to mid-childhood,
compared to later time points), raising questions about whether
these changes are due to developmental timing or differences
between cord and peripheral blood. In this respect, the creation of
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a single, integrated panel which estimates a more comprehensive
set of cell-types, including (i) cells that may be present at only one
time point (e.g., nRBCs at birth), as well as (ii) cell types that may
be ubiquitous across development, but still vary in abundance
over time (e.g., naïve versus memory B cells), could offer an
attractive solution to better separate tissue from timing-related
differences.

Neuroimaging
Measurement heterogeneity is also a factor for neuroimaging
assessments. MRI scanner types typically vary across study sites,
and even within one site, scanners are often upgraded or replaced
over time. Different strategies that have been proposed for
reducing this unwanted geographical and temporal variation,
include harmonization techniques like ComBat [46–48], deep
learning [49], or hierarchical Bayesian regression [50]. However,
removing the geographical and temporal variation from neuroi-
maging assessments can be challenging in developmental
research: consider participants scanned repeatedly at different
ages (e.g., as newborns and later in development) at various
locations or with different scanners. While harmonization techni-
ques aim to eliminate unwanted scanner or site variations, there is
a risk they might also inadvertently remove developmental
variation-of-interest. Currently, there is a lack of consensus about
whether these methods should or should not be used for
developmental cohorts. For example, one large-scale study by
Ge et al. [19], involving almost 40,000 participants from 86 cohorts,
used ComBat to control for unwanted site effects while comparing
statistical methods for normative modeling of brain morphometric
data. Another large-scale study by Kia et al. [50], also including
almost 40,000 participants from 79 scanners, harmonized their
data by using federated hierarchical Bayesian regression. In
contrast, another large study by Bethlehem et al. [18], including
over 100,000 participants from 100 cohorts, chose not to perform
harmonization techniques for constructing normalized brain
charts. Overall, it is unclear how best to strike a balance between
reducing unwanted scanner variation while also preserving
developmental changes crucial for accurate interpretation.
Most neuroimaging processing software packages - such as

FreeSurfer, Statistical Parametric Mapping (SPM), and FMRIB
Software Library (FSL) – have been developed for and tested in
adult samples, raising concerns about how these methods
perform in data from infants and children. For example, although
the standard FreeSurfer suite has been successfully applied to
data from children aged 4 years [51], Infant FreeSurfer has been
developed for infants aged 0–2 [52]. Other software packages
developed especially for fetal or neonatal brain scans include
iBEAT [53] and NEOCIVET [54]. An important question that follows
is whether cohorts should prioritize methodological consistency
(i.e., reduce technical variability at the cost of potentially lower
accuracy, by processing all neuroimaging data with the same
software) or developmental sensitivity (i.e., use accurate tools at
the cost of methodological consistency, by processing neuroima-
ging data with developmentally appropriate software) when
harmonizing cross-cohort neuroimaging data across different life
stages. Both strategies have been used in the past. For example, a
recent analysis from the ENIGMA Lifespan consortium, including
data from age 3 to 90 years across 86 cohorts, only used standard
FreeSurfer [19]. In contrast, Bethlehem et al. [18] created normal-
ized brain charts for mid-gestation up to age 100, while allowing
for the use of developmentally-sensitive processing software
across cohorts. Consequently, all adult cohorts were processed
using FreeSurfer, but there was considerable heterogeneity of
methods in data from pre-birth to early childhood (e.g., manual
segmentation, NEOCIVET, customized FreeSurfer versions, Infant
FreeSurfer, and standard Freesurfer). It is still unclear whether the
use of age-tailored software tools adds or reduces noise in
longitudinal analyses that span several developmental periods

(e.g., birth to early adulthood). Other strategies include leveraging
age-appropriate software, while clustering analyses by develop-
mental period, and accounting for software-related variations
during the meta-analysis phase. Alternatively, findings can be
triangulated using different processing software. Overall, research
evaluating the best options for leveraging developmentally
sensitive data is needed to provide evidence-based guidelines
for the field.

Challenge #2: Modeling time-varying DNAm-brain
associations in multi-cohort analyses
Besides considering how best to account for variability between
MIND cohorts, decisions must also be made regarding how best to
statistically perform multi-cohort integration. Both DNAm and brain
structure are highly dynamic across development, meaning their
associations may differ depending on when they are assessed
[15–19]. In consortium settings, standard meta-analyses remain the
most popular option, where an exposure (e.g., DNAm at specific loci)
is associated with an outcome (e.g., a brain feature) using regression
models within each individual cohort, after which cohort-level
summary statistics are pooled through meta-analysis. Such methods
were used by Jia et al. [14], which is currently the largest DNAm-
brain multi-cohort study [12], meta-analyzing data from 3337
participants (mainly adults) across 11 cohorts. Notably, only two
CpGs were found to be associated with hippocampal volume after
correction for multiple testing, and none for the thalamus or the
nucleus accumbens – the other two regions investigated. While this
could suggest that the meta-analysis was either underpowered to
detect modest effects or that peripheral DNAm and volumetric brain
differences are largely unrelated, it could also indicate that rather
than being constant, associations vary over time. Unless explicitly
modeled, however, this information is lost in standard meta-analytic
approaches, which inherently assume constant exposure-outcome
associations; i.e., that the link between DNAm and the brain does
not change over time. Although this restriction could have the
advantage of identifying age-averaged associations (which may be
more generalizable across age groups), it comes at the cost of
obscuring time-varying effects. This may be particularly problematic
for studies which pool data from both pediatric and adult cohorts, as
changes in DNAm patterns and brain features are expected to be
more drastic earlier in life.
An alternative approach to address developmental timing in

multi-cohort studies involves strategic pooling of summary data at
specific age ranges, as opposed to pooling all cohorts together
regardless of age. This approach is commonly used in the PACE
consortium (e.g., [6, 45]), prioritizing one epigenetic time point of
interest (e.g., birth, because it is generally the time point with the
largest sample size, or because of a focus on pregnancy
exposures) and then quering later DNAm assessments by (i)
adopting a follow-forward approach, where significant CpG sites
are selected for further analysis and tested at subsequent time
points (e.g., [7, 9, 55]) or by (ii) conducting a completely new set of
analyses at later developmental stages (e.g., running separate
epigenome-wide analyses using DNAm at birth and DNAm in
childhood in relation to the same child outcome [6, 45]). While this
strategy helps to partition analyses according to more
developmentally-specific age groups, it does not directly quantify
temporal changes in DNAm-brain associations, nor does it account
for the potential non-linearity of this relationship over time. For
this, meta-regression methods could be applied, which allow to
test, within the same model (still based on cohort-specific
summary statistics), (i) how DNAm and brain features associate
at each available time points/developmental period, (ii) whether
these associations change across time periods, and (iii) whether
changes are linear or non-linear [15–17]. For an example of
applying longitudinal meta-regression to quantify DNAm timing
effects on child health outcomes using cohort-level summary
statistics from the PACE Consortium, see [56].
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While the above strategies can help us get started, ultimately,
the transition toward a mega-analysis framework using individual-
level data will offer greater modeling flexibility and new
opportunities to address developmental questions in collaborative
multi-cohort studies. Three concrete examples of potential
applications here include longitudinal mixed models (LMM),
structured life-course modeling analysis (SLCMA) and structural
equation modeling (SEM). Mixed models test whether changes in a
predictor (measured at repeated time points, e.g., DNAm at birth,
age 6, and age 10) associates with an outcome (measured at
single time points, e.g., brain feature at age 14) over time. While
we are not aware of any existing multi-cohort studies using LMM
to model DNAm-brain associations, this method was recently
applied (i) in a single-cohort study to examine whether DNAm
sites across time prospectively associate with the amygdala:hip-
pocampus ratio in early adulthood [57], and (ii) to individual-level
data from two longitudinal cohorts in order to characterize how
epigenome-wide DNAm patterns vary over the first two decades
of life [15]. As an alternative to LMM, SLCMA uses repeated
measures of a predictor to test competing temporal hypotheses
about its effect on a particular outcome (measured at a single time
point). It has been used for example to test the developmental
effect of stress exposure on child DNAm, showing that stressful
experiences are more likely to associate with changes in DNAm if
they occur early rather than late in childhood [58, 59]). This
approach could be extended to model repeated DNAm as a
predictor, in order to establish whether epigenetic effects on brain
outcomes may also be developmentally-specific (orange line,
Fig. 3), or might diminish or accumulate over time (red and purple
lines, Fig. 3), as opposed to being temporally invariant (green line,
Fig. 3). Finally, SEM allows modeling of repeated measures for both
the predictor and the outcome; it has been previously applied to
DNAm and neuroimaging data, although not within the same
study. In the context of MIND, this model could be used to
integrate DNAm-brain data, for example, (i) to estimate the degree
of temporal stability in either epigenetic patterns and brain
features across development (i.e., autoregressive paths), (ii)
to examine relationships between these DNAm and the brain
over time (i.e., cross-lagged paths), and (iii) to test genetic/
environmental predictors or phenotypic (health) outcomes of
identified DNAm-brain associations, as well as mediating effects
(i.e., indirect paths). Despite the potential of these advanced
methods to model complex (repeated) DNAm-brain measures for
time-varying associations, their implementation within a multi-
cohort framework remains a more distant goal. Success in this
respect will first depend on overcoming existing barriers in
sharing of individual-level data, increasing availability of meta-
analyses for advanced statistical models, accessing a large enough
set of cohorts with sufficiently comparable repeated DNAm/
neuroimaging measures, and deciding how best to balance the
complexity of longitudinal methods with the high-dimensionality
of these data types, as discussed in more detail below.

Challenge #3: Analyzing high-dimensional data
A third set of challenges relates to the dimensionality of DNAm
and MRI data. In MIND, if we were to focus on single
predictor–single outcome models, with a sample size of
approximately >6000, we would be powered to detect an effect
size (R2) of 0.001 at p < 0.05. However, DNAm data is commonly
investigated through univariate epigenome-wide associations
(with covariate adjustment), where DNAm-phenotype relation-
ships are studied for a large number of individual sites across
the genome. Epigenome-wide investigations currently interro-
gate up to 900,000 data points per person, depending on which
array is used (note that even more data points can be measured
with some technologies [28]). A commonly employed statistical
threshold in such studies is p < 9 × 10⁻8 [60]. Under this
threshold, MIND would be powered to detect associations with

an effect size (R2) of 0.006. Yet, brain data can be treated as
high-dimensional as well, and are often examined voxel-wide,
where local density of gray matter is compared between
participants (e.g., per 1mm3 of the brain), again resulting in
hundreds of thousands of data points per participant. Findings
from other epigenetic or neuroimaging consortia already
suggest that detecting small to medium effects typically requires
thousands of participants to ensure robust and reproducible
associations when analyzing epigenetic these data types
independently [61, 62]. When these datasets are combined,
the challenge of collating adequately powered sample sizes
becomes even greater. If epigenome- and voxel-wide data are
analyzed together in the same model, even if just at a single
time point, this would add up to examining more than a billion
associations (CpG by voxel). At present, there are no concrete
estimates for the sample sizes required for such large-scale
Neuroimaging Epigenetics analyses. However, assuming a strict
Bonferroni-adjusted threshold of p < 1 × 10⁻13 (as based on
genome by voxel-wide analyses [63]), we would still be powered
to detect small effects with an R2 of 0.011 with an sample size
>6000. Notably, recent efforts have been made to apply such
high-dimensional models within a single time point in the
context of gene-environment interplay on DNAm, with some
promising findings [64]. Yet, such models, especially if extended
longitudinally, are currently neither practical (due to computa-
tional burden) nor feasible (due to limited power in smaller
subsets of the data) within Neuroimaging Epigenetics. Therefore,
in the context of MIND, some level of data manipulation is
necessary.
One approach to managing high-dimensional DNAm data is

preselecting CpGs, e.g. by focusing on variable CpGs known to
differ across individuals, those with known cross-tissue correspon-
dence (identified within blood-brain methylation databases [38]),
or by focusing on CpGs close to genes implicated in neuronal
development. However, candidate-based approaches have inher-
ent limitations, including reduced discovery potential, the risk of
overlooking novel or developmentally relevant CpG sites, and the
challenge of ensuring generalizability across diverse populations
and tissues. Alternatively, high-dimensional data can be handled
by applying dimension reduction techniques, such as principal
component analysis, (parallel) independent component analysis,
local Fisher’s discriminant analysis, and canonical correlation
analysis [65, 66]. These methods have indeed been applied to
neuroimaging epigenetic data in single cohorts, although their
application to multi-cohort analyses can be challenging due to the
potential of obtaining different model solutions (e.g., factors or
components comprised of different CpGs/brain features, or
different weights) in different cohorts.
Additionally, we can condense high-dimensional data into

singular aggregate scores that can be computed in a comparable
way across cohorts, as done for example in the case of biological
age estimates such as epigenetic age and brain age [67, 68]. In
particular, the use of methylation profile scores (MPS) is gaining
popularity in epigenetic research [69], following in the footsteps of
polygenic scores (PGS) within the field of genetics. Within MIND,
we could use MPSs to proxy at an epigenetic level brain-relevant
exposures (e.g., prenatal smoking or insufficient sleep), biological
processes (e.g., inflammation, neuroendocrine function), and
health outcomes (e.g., mental or cardiometabolic phenotypes).
We could also seek to develop MPSs of brain features themselves,
an approach not yet attempted. In this context, it would be
particularly interesting to conduct pathway analyses on the
included CpGs to identify the underlying biological mechanisms
driving associations in Neuroimaging Epigenetics. Another appli-
cation of MPSs is to use them as a proxy for missing covariates or
to enhance the quality of data imputation, which could be
particularly helpful in the case of multi-cohort analyses (as certain
cohorts may not have collected important covariates, or at least
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not at the specific age of interest). Overall, MPSs may offer a
practical solution to manage high dimensionality while also
aggregating together many epigenetic loci of small effect; yet,
they also have their challenges. For example, MPSs are increas-
ingly constructed using penalized linear regression techniques,
which require adequate consideration and availability of training,
tuning and testing datasets. The selection and splitting of
datasets, and the amount of data reserved for training versus
testing, can reduce sample size and power. Of note, to obtain
reliable estimates for PGSs in complex traits, discovery samples
from tens to hundreds of thousands of individuals have been
required. Sample sizes required to construct reliable MPSs remain
undefined. Furthermore, the predictive power of PRSs is
influenced by ancestry [70]. While some evidence shows this
may be less of an issue with MPSs [71], it will be of interest to test
performance of MPSs in MIND to generate MPSs that can ideally
be applied across ancestries. Finally, MPSs cannot be reliably
constructed without accounting for key covariates known to
influence the epigenome, such as age, sex, prenatal and postnatal
exposure to smoking, and cell-type composition. All these factors
must be carefully adjusted for or integrated into model
construction to ensure valid MPSs.

CONCLUSIONS
The potential of large-scale collaborative efforts between cohorts
has been clearly demonstrated by the success of genome-wide
association studies (for example by the Psychiatric Genetic
Consortium [21]), epigenome-wide association studies (for exam-
ple by PACE [22]), and neuroimaging studies (for example by
ENIGMA [23] or specifically ENIGMA-ORIGINs [24]). The MIND
consortium aims to apply these principles to the emerging field of
Neuroimaging Epigenetics, with a particular emphasis on devel-
opment. Priorities include fostering multi-cohort analyses to
access collaborative, adequately powered developmental
research; to establish shared pipelines; and to elucidate the
time-varying relationship between peripheral DNAm and brain
development through prospective, longitudinal cohorts spanning
pre-birth to young adulthood. MIND is committed to pursuing
these goals while supporting open science practices, including the
use of pre-registration of studies, sharing of analysis scripts, and
making full results (e.g., meta-analysis summary statistics) openly
accessible. Through these activities, the consortium aims to
facilitate an integrative and efficient research environment and
to enhance the transparency and reproducibility of our research.
Overall, we hope that MIND will represent a significant step
towards shedding light into the complex, dynamic relationship
between peripheral DNAm and the brain, and to understanding
how these ultimately relate to neurodevelopmental and psychia-
tric phenotypes.

JOINING US
The MIND Consortium operates as an open network, welcoming
researchers interested in joining with one or more of its cohorts.
In this consortium, each participant manages and analyses their
data locally. Detailed protocols for each study can be accessed
through their individual websites (see Supplementary materials)
or by contacting the study investigators. In order to participate
in MIND, cohorts must feature at least one assessment of DNAm
(peripheral, array-based) and neuroimaging collected before the
age of 18 years. Those interested in collaborating with the MIND
Consortium are encouraged to contact the corresponding
authors (Dr. Esther Walton, E.Walton@bath.ac.uk; Dr. Charlotte
Cecil, c.cecil@erasmusmc.nl). More information can also be
found on our website: https://www.erasmusmc.nl/en/research/
groups/methylation-imaging-and-neurodevelopment-mind-
consortium#.
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